Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
J Pathol Clin Res ; 10(2): e12368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454538

RESUMO

We performed comprehensive analyses of somatic copy number alterations (SCNAs) and gene expression profiles of gastric intramucosal neoplasia (IMN) using array-based methods in 97 intestinal-type IMNs, including 39 low-grade dysplasias (LGDs), 37 high-grade dysplasias (HGDs), and 26 intramucosal carcinomas (IMCs) with stromal invasion of the lamina propria to identify the molecular mechanism of IMN. In addition, we examined gene mutations using gene panel analyses. We used cluster analyses for exclusion of arbitrariness to identify SCNA patterns and expression profiles. IMNs were classified into two distinct subgroups (subgroups 1 and 2) based on SCNA patterns. Subgroup 1 showed a genomic stable pattern due to the low frequency of SCNAs, whereas subgroup 2 exhibited a chromosomal instability pattern due to the high frequencies of SCNAs and TP53 mutations. Interestingly, although the frequencies of LGD and HGD were significantly higher in subgroup 1 than in subgroup 2, IMC was commonly found in both types. Although the expression profiles of specific mRNAs could be used to categorise subgroups 1 and 2, no clinicopathological findings correlated with either subgroup. We examined signalling pathways specific to subgroups 1 and 2 to identify the association of each subgroup with signalling pathways based on gene ontology tree visualisation: subgroups 1 and 2 were associated with haem metabolism and chromosomal instability, respectively. These findings reveal a comprehensive genomic landscape that highlights the molecular complexity of IMNs and provide a road map to facilitate our understanding of gastric IMNs.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias Gástricas , Humanos , Variações do Número de Cópias de DNA/genética , Estudo de Associação Genômica Ampla , Mutação , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Instabilidade Cromossômica
2.
BMC Gastroenterol ; 24(1): 91, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429655

RESUMO

BACKGROUND: Aberrant DNA methylation is prevalent in colorectal serrated lesions. We previously reported that the CpG island of SMOC1 is frequently methylated in traditional serrated adenomas (TSAs) and colorectal cancers (CRCs) but is rarely methylated in sessile serrated lesions (SSLs). In the present study, we aimed to further characterize the expression of SMOC1 in early colorectal lesions. METHODS: SMOC1 expression was analyzed immunohistochemically in a series of colorectal tumors (n = 199) and adjacent normal colonic tissues (n = 112). RESULTS: SMOC1 was abundantly expressed in normal colon and SSLs while it was significantly downregulated in TSAs, advanced adenomas and cancers. Mean immunohistochemistry scores were as follows: normal colon, 24.2; hyperplastic polyp (HP), 18.9; SSL, 23.8; SSL with dysplasia (SSLD)/SSL with early invasive cancer (EIC), 15.8; TSA, 5.4; TSA with high grade dysplasia (HGD)/EIC, 4.7; non-advanced adenoma, 21.4; advanced adenoma, 11.9; EIC, 10.9. Higher levels SMOC1 expression correlated positively with proximal colon locations and flat tumoral morphology, reflecting its abundant expression in SSLs. Among TSAs that contained both flat and protruding components, levels of SMOC1 expression were significantly lower in the protruding components. CONCLUSION: Our results suggest that reduced expression of SMOC1 is associated with progression of TSAs and conventional adenomas and that SMOC1 expression may be a biomarker for diagnosis of serrated lesions and risk prediction in colorectal tumors.


Assuntos
Adenoma , Pólipos do Colo , Neoplasias Colorretais , Humanos , Adenoma/genética , Adenoma/patologia , Pólipos do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação para Baixo , Hiperplasia , Osteonectina , Proteínas Proto-Oncogênicas B-raf/genética
3.
Int J Oncol ; 64(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299254

RESUMO

Histone modification, a major epigenetic mechanism regulating gene expression through chromatin remodeling, introduces dynamic changes in chromatin architecture. Protein arginine methyltransferase 6 (PRMT6) is overexpressed in various types of cancer, including prostate, lung and endometrial cancer (EC). Epigenome regulates the expression of endogenous retrovirus (ERV), which activates interferon signaling related to cancer. The antitumor effects of PRMT6 inhibition and the role of PRMT6 in EC were investigated, using epigenome multi­omics analysis, including an assay for chromatin immunoprecipitation sequencing (ChIP­seq) and RNA sequencing (RNA­seq). The expression of PRMT6 in EC was analyzed using reverse transcription­quantitative polymerase chain reaction (RT­qPCR) and immunohistochemistry (IHC). The prognostic impact of PRMT6 expression was evaluated using IHC. The effects of PRMT6­knockdown (KD) were investigated using cell viability and apoptosis assays, as well as its effects on the epigenome, using ChIP­seq of H3K27ac antibodies and RNA­seq. Finally, the downstream targets identified by multi­omics analysis were evaluated. PRMT6 was overexpressed in EC and associated with a poor prognosis. PRMT6­KD induced histone hypomethylation, while suppressing cell growth and apoptosis. ChIP­seq revealed that PRMT6 regulated genomic regions related to interferons and apoptosis through histone modifications. The RNA­seq data demonstrated altered interferon­related pathways and increased expression of tumor suppressor genes, including NK6 homeobox 1 and phosphoinositide­3­kinase regulatory subunit 1, following PRMT6­KD. RT­qPCR revealed that eight ERV genes which activated interferon signaling were upregulated by PRMT6­KD. The data of the present study suggested that PRMT6 inhibition induced apoptosis through interferon signaling activated by ERV. PRMT6 regulated tumor suppressor genes and may be a novel therapeutic target, to the best of our knowledge, in EC.


Assuntos
Neoplasias do Endométrio , Histonas , Masculino , Feminino , Humanos , Histonas/metabolismo , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Código das Histonas , Neoplasias do Endométrio/genética , Apoptose , Interferons
4.
Prostate ; 84(3): 303-314, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032025

RESUMO

BACKGROUND: Numerous studies have investigated the associations between maternal nutritional status and various diseases, with the underlying mechanism often attributed to epigenetic changes. However, limited research has been conducted on the relationship between maternal nutrition and benign prostatic hyperplasia (BPH). In this study, we aimed to explore the potential association between maternal nutrition and BPH using an animal experiment and evaluating the findings through fluorescent immunostaining and genetic analysis. METHODS: Female spontaneously hypertensive rats (SHR/Izm) were randomly assigned to three groups at the start of pregnancy: a standard diet group (SD; 17% protein, 7% fat), a low-protein diet group (LPD; 6% protein, 7% fat), and a high-fat diet group (HFD; 22% protein, 35% fat). The diets were maintained throughout gestation. After giving birth, both the mothers and their pups were exclusively fed a standard diet. Male pups were euthanized at 48 weeks, and their prostates were removed. The composition of the ventral prostate (VP) was evaluated using fluorescent immunostaining with antibodies for cytokeratin, vimentin, and Ki-67. Microarray analysis, real-time RT-PCR, and DNA methylation analysis using pyrosequencing were performed. Statistical analysis was conducted using one-way ANOVA and Tukey's multiple comparison test, with a significance level set at p < 0.05. RESULTS: Pups in the LPD group exhibited significant underweight from birth (1 day; SD vs. LPD vs. HFD: 4.46 vs. 4.08 vs. 4.35, p = 0.04) until weaning (21 days; SD vs. LPD vs. HFD: 30.8 vs. 27.4 vs. 29.2, p = 0.03). However, they exhibited catch-up growth, and there was no significant difference at 48 weeks (p = 0.84). The epithelial area in the ventral prostate was significantly increased in the LPD group (SD vs. LPD vs. HFD: 39% vs. 48% vs. 37%, p = 0.01), while the stromal area was significantly increased in the HFD group (SD vs. LPD vs. HFD: 11% vs. 11% vs. 15%, p < 0.01). Gene ontology analysis of the gene expression microarray showed increased activity in developmental processes (SD vs. LPD: p = 6.3E-03, SD vs. HFD: p = 7.2E-03), anatomical structure development (SD vs. LPD: p = 6.3E-03, SD vs. HFD: p = 5.3E-03), and cell differentiation (SD vs. LPD: p = 0.018, SD vs. HFD: p = 0.041) in both the LPD and HFD groups. Real-time RT-PCR revealed high expression levels of the transcription factors NFκB (p < 0.01) and Smad3 (p < 0.01) in both the LPD and HFD groups. XIAP, an apoptosis inhibitor, was increased in the LPD group (p = 0.02). The TGF beta pathway, associated with epithelial mesenchymal transition (EMT), and vimentin (p < 0.01) were upregulated in the HFD group. Pyrosequencing DNA methylation analysis of the TGF beta pathway indicated hypomethylation of TGFb1, TGFbR1, and Smad3 in all groups, although there were no significant differences. CONCLUSIONS: Our findings suggest that both maternal undernutrition and obesity influence the prostatic development of offspring. Maternal consumption of a low protein diet promotes epithelial hyperplasia through the upregulation of apoptosis inhibitors, while a high fat diet leads to increased stromal growth through the induction of EMT.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Hiperplasia Prostática , Ratos , Animais , Humanos , Gravidez , Feminino , Masculino , Vimentina , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos Endogâmicos SHR , Dieta Hiperlipídica/efeitos adversos , Fator de Crescimento Transformador beta
5.
Cancers (Basel) ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686580

RESUMO

We previously showed that upregulation of adipocyte enhancer-binding protein 1 (AEBP1) in vascular endothelial cells promotes tumor angiogenesis. In the present study, we aimed to clarify the role of stromal AEBP1/ACLP expression in oral squamous cell carcinoma (OSCC). Immunohistochemical analysis showed that ACLP is abundantly expressed in cancer-associated fibroblasts (CAFs) in primary OSCC tissues and that upregulated expression of ACLP is associated with disease progression. Analysis using CAFs obtained from surgically resected OSCCs showed that the expression of AEBP1/ACLP in CAFs is upregulated by co-culture with OSCC cells or treatment with TGF-ß1, suggesting cancer-cell-derived TGF-ß1 induces AEBP1/ACLP in CAFs. Collagen gel contraction assays showed that ACLP contributes to the activation of CAFs. In addition, CAF-derived ACLP promotes migration, invasion, and in vivo tumor formation by OSCC cells. Notably, tumor stromal ACLP expression correlated positively with collagen expression and correlated inversely with CD8+ T cell infiltration into primary OSCC tumors. Boyden chamber assays suggested that ACLP in CAFs may attenuate CD8+ T cell migration. Our results suggest that stromal ACLP contributes to the development of OSCCs, and that ACLP is a potential therapeutic target.

6.
Cells ; 12(17)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681892

RESUMO

The current study's objective was to elucidate some currently unknown biological indicators to evaluate the biological nature of cancer-associated fibroblasts (CAFs). For this purpose, four different CAFs, CAFS1, CAFS2, SCC17F and MO-1000, were established using surgical specimens from oral squamous cell carcinomas (OSCC) with different clinical malignant stages (CAFS1 and CAFS2, T2N0M0, stage II; SCC17F and MO-1000, T4aN2bM0, stage IVA). Fibroblasts unrelated to cancer (non-CAFs) were also prepared and used as controls. Initially, confirmation that these four fibroblasts were indeed CAFs was obtained by their mRNA expression using positive and negative markers for the CAF or fibroblasts. To elucidate possible unknown biological indicators, these fibroblasts were subjected to a cellular metabolic analysis by a Seahorse bioanalyzer, in conjugation with 3D spheroid cultures of the cells and co-cultures with a pancreas ductal carcinoma cell line, MIA PaCa-2. The mitochondrial and glycolytic functions of human orbital fibroblasts (HOF) were nearly identical to those of Graves'-disease-related HOF (GOF). In contrast, the characteristics of the metabolic functions of these four CAFs were different from those of human conjunctival fibroblasts (HconF), a representative non-CAF. It is particularly noteworthy that CAFS1 and CAFS2 showed markedly reduced ratios for the rate of oxygen consumption to the extracellular acidification rate, suggesting that glycolysis was enhanced compared to mitochondrial respiration. Similarly, the physical aspects, their appearance and stiffness, of their 3D spheroids and fibroblasts that were induced effects based on the cellular metabolic functions of MIA PaCa-2 were also different between CAFs and non-CAFs, and their levels for CAFS1 or SCC17F were similar to those for CAFS2 or MO-1000 cells, respectively. The findings reported herein indicate that cellular metabolic functions and the physical characteristics of these types of 3D spheroids may be valuable and useful indicators for estimating potential biological diversity among various CAFs.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Humanos , Fibroblastos , Consumo de Oxigênio
7.
Cell Death Dis ; 14(7): 424, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443145

RESUMO

Long noncoding RNAs (lncRNAs) play pivotal roles in tumor development. To identify dysregulated lncRNAs in gastric cancer (GC), we analyzed genome-wide trimethylation of histone H3 lysine 4 (H3K4me3) to screen for transcriptionally active lncRNA genes in the non-tumorous gastric mucosa of patients with GC and healthy individuals. We found that H3K4me3 at TM4SF1-AS1 was specifically upregulated in GC patients and that the expression of TM4SF1-AS1 was significantly elevated in primary and cultured GC cells. TM4SF1-AS1 contributes to GC cell growth in vitro and in vivo, and its oncogenic function is mediated, at least in part, through interactions with purine-rich element-binding protein α (Pur-α) and Y-box binding protein 1 (YB-1). TM4SF1-AS1 also activates interferon signaling in GC cells, which is dependent on Pur-α and RIG-I. Chromatin isolation by RNA purification (ChIRP)-mass spectrometry demonstrated that TM4SF1-AS1 was associated with several stress granule (SG)-related proteins, including G3BP2, RACK1, and DDX3. Notably, TM4SF1-AS1 promoted SG formation and inhibited apoptosis in GC cells by sequestering RACK1, an activator of the stress-responsive MAPK pathway, within SGs. TM4SF1-AS1-induced SG formation and apoptosis inhibition are dependent on Pur-α and YB-1. These findings suggested that TM4SF1-AS1 contributes to tumorigenesis by enhancing SG-mediated stress adaptation.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , RNA Longo não Codificante/genética , Grânulos de Estresse , Apoptose/genética , Neoplasias Gástricas/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Antígenos de Superfície , Proteínas de Neoplasias/metabolismo
8.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37317982

RESUMO

Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genomic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families-genes directly mediating interactions with plant chemical defenses-underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many insect lineages are ancient (>150 million years ago (mya)), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several nonherbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza has among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant-binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on living plants (bitter or electrophilic phytotoxins) or their ancestral diet (fermenting plant volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight gene candidates that have also been linked to other dietary transitions in Drosophila.


Assuntos
Proteínas de Drosophila , Herbivoria , Animais , Herbivoria/genética , Drosophila/genética , Drosophila/metabolismo , Insetos , Proteínas de Drosophila/genética , Genômica/métodos , Filogenia , Evolução Molecular
9.
EMBO Rep ; 24(8): e56335, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37341560

RESUMO

While there is growing evidence that many epigenetically silenced genes in cancer are tumour suppressor candidates, their significance in cancer biology remains unclear. Here, we identify human Neuralized (NEURL), which acts as a novel tumour suppressor targeting oncogenic Wnt/ß-catenin signalling in human cancers. The expression of NEURL is epigenetically regulated and markedly suppressed in human colorectal cancer. We, therefore, considered NEURL to be a bona fide tumour suppressor in colorectal cancer and demonstrate that this tumour suppressive function depends on NEURL-mediated oncogenic ß-catenin degradation. We find that NEURL acts as an E3 ubiquitin ligase, interacting directly with oncogenic ß-catenin, and reducing its cytoplasmic levels in a GSK3ß- and ß-TrCP-independent manner, indicating that NEURL-ß-catenin interactions can lead to a disruption of the canonical Wnt/ß-catenin pathway. This study suggests that NEURL is a therapeutic target against human cancers and that it acts by regulating oncogenic Wnt/ß-catenin signalling.


Assuntos
Neoplasias do Colo , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Via de Sinalização Wnt , Neoplasias do Colo/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Linhagem Celular Tumoral
10.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993186

RESUMO

Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genetic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families - genes directly mediating interactions with plant chemical defenses - underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many lineages are ancient (>150 million years ago [mya]), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several non-herbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza have among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on plants (bitter or electrophilic phytotoxins) or their ancestral diet (yeast and fruit volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight strong gene candidates that have also been linked to other dietary transitions in Drosophila .

12.
Cancer Med ; 12(4): 4446-4454, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35920319

RESUMO

BACKGROUND: The objective of this study was to elucidate the association between neoplastic progression and somatic copy number alterations (SCNAs) occurring within the same colorectal cancer (CRC) tumor. METHODS: We investigated SCNAs to identify the progression from a high-grade intramucosal lesion (HGIL) to an invasive front lesion (IFL), via an invasive submucosal lesion (ISL), within the same tumor using a crypt isolation method combined with a SNP array. Immunohistochemistry was also performed. RESULTS: We identified 51 amplified genes that potentially promote progression from HGIL to ISL and 6 amplified genes involved in the progression from ISL to IFL. Of the 51 genes involved in HGIL to ISL progression, TORC1, MSLN, and STUB1, which are closely associated with CRC, were identified as candidate markers of submucosal invasion. However, no candidate genes were identified among the six genes associated with ISL to IFL progression. In addition, the number of total SCNAs and the number of gains were correlated with cancer progression (from HGIL to IFL). Finally, immunohistochemistry revealed higher expression of TORC1, MSLN, and STUB1 in ISL than in HGIL. CONCLUSIONS: These results suggest that specific SCNAs are required for acquisition of invasive ability in CRC, and the affected genes are potential markers of invasion.


Assuntos
Neoplasias Colorretais , Variações do Número de Cópias de DNA , Humanos , Dosagem de Genes , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ubiquitina-Proteína Ligases/genética
13.
Dig Dis Sci ; 68(3): 813-823, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35674995

RESUMO

BACKGROUND: No effective early diagnostic biomarkers are available for colorectal cancer (CRC). Therefore, we sought to identify new biomarkers that could identify CRC from progression as a pre-cancerous lesion to its invasive form. Recent studies have shown that microRNAs (miRs) are associated with the onset of cancer invasion and progression. AIMS: We hypothesized that the identification of miRs associated with CRC might be useful to detect this disease at early stages. METHODS: We conducted an integrated analysis of 79 isolated colorectal tumor glands, including adenomas, intramucosal cancers, and invasive CRCs that showed a microsatellite stable phenotype using GeneChip miRNA 4.0 microarray assays. The colorectal tumors we examined were divided into 2 cohorts (42 in the first cohort and 37 in the second cohort). RESULTS: First, cluster analysis was performed to stratify expression patterns of multiple miRs that were pooled according to the following criteria: fold change in expression (< -2.0 or > 2.0), p < 0.05, and mature miRs. As a result, the expression patterns of pooled miRs were subdivided into 3 subgroups that were correlated with tumor grade. Each subgroup was characterized by specific miRs. In addition, we found that specific miRs, including miR-140-3p and miR-378i, were closely associated with cancer invasion. Finally, we analyzed paired dysregulated miRs between adenomatous and cancerous components present within the same tumor. DISCUSSION: We showed that several miRs were dysregulated during progression from adenoma to intramucosal cancer. Specific miRs may have key roles in progression from intramucosal tumor to invasive CRC.


Assuntos
Adenoma , Neoplasias Colorretais , MicroRNAs , Humanos , Neoplasias Colorretais/diagnóstico , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Biomarcadores Tumorais/genética , Adenoma/diagnóstico , Regulação Neoplásica da Expressão Gênica
14.
Cancer Med ; 12(5): 5953-5963, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36300800

RESUMO

BACKGROUND: The CXCL12/CXCR4 axis plays a pivotal role in the progression of various malignancies, including oral squamous cell carcinoma (OSCC). In this study, we aimed to clarify the biological and clinical significance of CXCL12 in the tumor microenvironment of OSCCs. METHODS: Publicly available single-cell RNA-sequencing (RNA-seq) datasets were used to analyze CXCL12 expression in head and neck squamous cell carcinomas (HNSCC). Immunohistochemical analysis of CXCL12, α-smooth muscle antigen (α-SMA), fibroblast activation protein (FAP) and CD8 was performed in a series of 47 surgically resected primary tongue OSCCs. Human skeletal muscle cells were co-cultured with or without OSCC cells, after which CXCL12 expression was analyzed using quantitative reverse-transcription PCR. RESULTS: Analysis of the RNA-seq data suggested CXCL12 is abundantly expressed in stromal cells within HNSCC tissue. Immunohistochemical analysis showed that in grade 1 primary OSCCs, CXCL12 is expressed in both tumor cells and muscle cells. By contrast, grade 3 tumors were characterized by disruption of muscle structure and reduced CXCL12 expression. Quantitative analysis of CXCL12-positive areas within tumors revealed that reduced CXCL12 expression correlated with poorer overall survival. Levels of CXCL12 expression tended to inversely correlate α-SMA expression and positively correlate with infiltration by CD8+ lymphocytes, though these relations did not reach statistical significance. CXCL12 was significantly upregulated in muscle cells co-cultured with OSCC cells. CONCLUSION: Our results suggest that tongue OSCC cells activate CXCL12 expression in muscle cells, which may contribute to tumor progression. However, CXCL12 is reduced in advanced OSCCs due to muscle tissue destruction.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Neoplasias da Língua , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Neoplasias da Língua/genética , Língua , Músculo Esquelético/patologia , Prognóstico , Microambiente Tumoral , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo
16.
Ann Surg Oncol ; 30(2): 1255-1266, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36222933

RESUMO

BACKGROUND: Metastasis of colorectal cancer (CRC) is a major cause of CRC-related mortality. However, the detailed molecular mechanism of CRC metastasis remains unknown. A recent study showed that the tumor microenvironment, which includes cancer cells and the surrounding stromal cells, plays a major role in tumor invasion and metastasis. Identification of altered messenger RNA (mRNA) expression in the tumor microenvironment is essential to elucidation of the mechanisms responsible for tumor progression. This study investigated the mRNA expression of genes closely associated with metastatic CRC compared with non-metastatic CRC. METHODS: The samples examined were divided into cancer tissue and isolated cancer stromal tissue. The study examined altered mRNA expression in the cancer tissues using The Cancer Genome Atlas (TCGA) (377cases) and in 17 stromal tissues obtained from our laboratory via stromal isolation using an array-based analysis. In addition, 259 patients with CRC were enrolled to identify the association of the candidate markers identified with the prognosis of patients with stage 2 or 3 CRC. The study examined the enriched pathways identified by gene set enrichment analysis (GSEA) based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) module in both the TCGA dataset and isolated stromal tissue. RESULTS: As a result, whereas tenascin-C, secreted phosphoprotein 1 and laminin were expressed in metastatic CRC cells, olfactory receptors (ORs) 11H1 and OR11H4 were expressed in stromal tissue cells isolated from metastatic CRC cases. Finally, upregulated expression of tenascin-C and OR11H4 was correlated with the outcome for CRC patients. CONCLUSION: The authors suggest that upregulated expression levels of tenascin-C and OR11H1 play an important role in CRC progression.


Assuntos
Neoplasias Colorretais , Tenascina , Humanos , RNA Mensageiro/genética , Tenascina/genética , Tenascina/metabolismo , Microambiente Tumoral , Neoplasias Colorretais/patologia , Prognóstico
17.
J Gastroenterol Hepatol ; 38(2): 301-310, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36345658

RESUMO

BACKGROUND AND AIM: The tumor microenvironment plays an essential role in the development and progression of colorectal cancer (CRC). We recently reported that crosstalk between CRC cells and tumor-associated macrophages (TAMs) via serum amyloid A1 (SAA1) promotes invasion by T1 CRCs. In the present study, we aimed to clarify the role of neutrophils in early CRCs. METHODS: Immunohistochemical analysis of CD66b, chemokine CXC motif ligand 8 (CXCL8 or interleukin-8, IL-8) and matrix metalloproteinase-9 (MMP-9) was performed using primary T1 CRCs (n = 49). The HL-60 human promyelocytic leukemia cell line and THP-1 human monocytic leukemia cell line were used to obtain neutrophil-like and macrophage-like cells, respectively. Boyden chamber assays were used to analyze cell migration and invasion, and quantitative RT-PCR was used to analyze gene expression. RESULTS: Immunohistochemical analysis revealed accumulation of neutrophils at the SAA1-positive invasive front of T1 CRCs. Experiments using HL-60 cells suggested that treatment with SAA1 induced neutrophil migration and expression of CXCL8 and MMP-9 in neutrophils and that neutrophils promote CRC cell migration and invasion. Immunohistochemistry confirmed accumulation of CXCL8- or MMP-9-positive neutrophils at the SAA1-positive invasive front of T1 CRCs. Moreover, co-culture experiments using CRC, THP-1 and HL-60 cells suggested that CRC cells activated by macrophages upregulate CXCL8 and MMP-9 in neutrophils. CONCLUSIONS: Our results suggest that interplay between macrophages and CRC cells leads to recruitment of neutrophils to the invasive front of T1 CRCs and that SAA1 secreted by CRC cells activate neutrophils to promote invasion.


Assuntos
Neoplasias Colorretais , Leucemia , Humanos , Neutrófilos/patologia , Metaloproteinase 9 da Matriz/metabolismo , Macrófagos/metabolismo , Neoplasias Colorretais/patologia , Leucemia/metabolismo , Leucemia/patologia , Microambiente Tumoral
18.
Front Oncol ; 12: 831100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875068

RESUMO

Background: Although MicroRNAs (miRNAs) play important roles in various biological processes, the biological functions of miRNAs are achieved through mRNAs. The aim of this study is to identify dysregulated miRNA/mRNA expression patterns in colorectal tumors. Methods: We examined 42 colorectal tumors [15 adenomas, 8 intramucosal cancers (IMCs), and 19 invasive colorectal cancers (CRCs)] with the microsatellite stable (MSS) phenotype (first cohort). The first cohort was used for genome-wide miRNA and mRNA expression arrays, whereas the second cohort (37 colorectal neoplasias) was used for validation analyses. Finally, we used 15 cases of "adenoma in/with carcinoma" to identify network patterns of miRNAs/mRNAs that were directly associated with neoplastic progression. In addition, simple regression analysis for array-based and RT-PCR analyses was performed to select candidate miRNA-mRNA pairs. Transfection of miRNA mimics was also performed to confirm whether target mRNA expression is affected by specific miRNAs. Results: Specific paired miRNA/mRNA networks, including hsa-miR-34a-5p/SLC12A2, hsa-miR-15b-5p/SLC12A2, hsa-miR-195-5p/SLC12A2, hsa-miRNA-502-3p/OLFM4, hsa-miRNA-6807-5p/ZG16, and hsa-miRNA 3064-5p/SH3BGRL3, were identified in samples of adenoma, IMC, and CRC with the MSS phenotype. In adenomatous lesions obtained from the same tumor with a carcinomatous lesion, we identified pairs of miRNA-130a-3p/HSPA8 and miRNA-22-3p/RP53 that were linked to multiple pathways. On the other hand, 2 pairs of miRNA/mRNA (miRNA-660-5p and miRNA-664a-5p/APP) were found in isolated carcinomatous glands. Ectopic expression of miRNA 3064-5p suppressed SH3BGRL3 expression. Conclusions: We found that networks based on specific pairs of miRNAs/mRNAs contribute to progression from adenomatous and carcinomatous lesions. Our results provide insights into the molecular tumorigenesis of colorectal tumors.

19.
Eur J Cancer ; 172: 311-322, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35816972

RESUMO

INTRODUCTION: Hepatoblastoma (HB) is the most common paediatric liver tumour, and epigenetic aberrations may be important in HB development. Recently, the Children's Hepatic Tumors International Collaboration-Hepatoblastoma Stratification (CHIC-HS) developed risk stratification based on clinicopathological factors. This study aimed to construct a more accurate model by integrating CHIC-HS with molecular factors based on DNA methylation. METHODS: HB tumour specimens (N = 132) from patients treated with the Japanese Pediatric Liver Tumors Group-2 protocol were collected and subjected to methylation analysis by bisulfite pyrosequencing. Associations between methylation status and clinicopathological factors, overall survival (OS), and event-free survival (EFS) were retrospectively analysed. We investigated the effectiveness of the evaluation of methylation status in each CHIC-HS risk group and generated a new risk stratification model. RESULTS: Most specimens (82%) were from post-chemotherapy tissue. Hypermethylation in ≥2 of the four genes (RASSF1A, PARP6, OCIAD2, and MST1R) was significantly associated with poorer OS and EFS. Multivariate analysis indicated that ≥2 methylated genes was an independent prognostic factor (hazard ratios of 6.014 and 3.684 for OS and EFS, respectively). Two or more methylated genes was also associated with poorer OS in the CHIC-very low (VL)-/low (L)-risk and CHIC-intermediate (I) risk groups (3-year OS rates were 83% vs. 98% and 50% vs. 95%, respectively). The 3-year OS rates of the VL/L, I, and high-risk groups in the new stratification model were 98%, 90%, and 62% (vs. CHIC-HS [96%, 82%, and 65%, respectively]), optimising CHIC-HS. CONCLUSIONS: Our proposed stratification system considers individual risk in HB and may improve patient clinical management.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , ADP Ribose Transferases/genética , ADP Ribose Transferases/uso terapêutico , Criança , DNA , Metilação de DNA , Hepatoblastoma/genética , Hepatoblastoma/patologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Proteínas de Neoplasias/genética , Estudos Retrospectivos , Medição de Risco
20.
Pathol Res Pract ; 236: 153987, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35749918

RESUMO

Precursor lesions that progress into colorectal cancer (CRC) could be largely classified into sessile serrated lesions (SSLs), traditional serrated adenoma (TSA), and tubular adenoma (TA). We aimed to determine whether high expression of trefoil factor 1 (TFF1) is closely associated with serrated lesions, particularly SSLs. The samples were divided into the first (12 SSLs, 5 TSAs, and 15 TAs) and second cohorts (15 SSLs, 9 TSAs, and 15 TAs). First, we investigated TFF1 expression in isolated gland samples using array-based and reverse-transcription PCR. Second, we performed immunohistochemical analysis of TFF1 expression in paraffin-embedded tissues obtained from SSL, TSA, TA, and hyperplastic polyp (HP) samples. In addition, we compared TFF1 mRNA levels between SSLs and HPs. TFF1 expression was significantly higher in SSLs than in TSA and TA in both cohorts. Additionally, immunohistochemical staining of TFF1 in the HP, SSL, TSA, and TA samples revealed significant differences in the immunohistochemical scores of TFF1 among the four types of lesions (higher expression in SSLs than in the other three lesions). Finally, there were significant differences in TFF1 mRNA expression levels between SSLs and HPs in paraffin-embedded tissues. However, there was considerable overlap in the immunohistochemical scores and expression levels of TFF1 transcripts between SSLs and HPs. The current findings may help elucidate the molecular mechanisms involved in serrated lesion development. In addition, we suggest that despite the limited practical application, upregulation of TFF1 transcripts may help differentiate SSLs from other lesions.


Assuntos
Adenoma , Pólipos do Colo , Neoplasias Colorretais , Neoplasias Gastrointestinais , Adenoma/patologia , Pólipos do Colo/genética , Pólipos do Colo/patologia , Neoplasias Colorretais/patologia , Humanos , RNA Mensageiro/genética , Fator Trefoil-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...